
FIX Orchestra: The Full Stop
at the End of FIX

June 2017

John Greenan, CEO Alignment Systems
FIX Orchestra Working Group

http://twitter.com/AlignmentSys
http://blog.alignment-systems.com

http://twitter.com/AlignmentSys
http://blog.alignment-systems.com/

FIX Orchestra Status
 Release Candidate 1 is available

 Application level orchestration
 Usable today to describe message structure, scenarios, actors, and states

 Available on GitHub
 FIX now develops technical standards in a fully open manner

 Release Candidate 2 in progress
 Support for FIXatdl
 Expression language
 ISO 20022 metamodel convergence
 Session layer orchestration
 Interface definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 2

FIX Orchestra History – June 2015

7/14/2017 Copyright (c) FIX Protocol Ltd. 3

FIX Orchestra History
 April 2014 http://blog.alignment-systems.com/2014/04/fidl-fix-interface-definition-

language.html
“There is some testing software out there (such as Greenline, LaSalleTech and others) but it
really exists to automate a manual process without re-engineering. This proposal aims to offer
a way forwards for the FIX Trading Community to allow a low value piece of work to be
automated and removed from the day-to-day work needed.”
 Initial implementation known as FIIDL – FIX Interactive Interface Definition (2013-2014)
 Proprietary, closed-source
 June 2015 New working group, clean-room, fresh start

7/14/2017 Copyright (c) FIX Protocol Ltd. 4

http://blog.alignment-systems.com/2014/04/fidl-fix-interface-definition-language.html

Why Orchestra?

7/14/2017 Copyright (c) FIX Protocol Ltd. 5

How to engage a FIX counterparty without Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 6

What problems are we trying to solve?
 FIX protocol was loosely specified from the start. Plenty of room for interpretation.
 Specifications are usually documented in human readable documents that are exchanged

between counterparties. Humans must interpret the specs and turn them into executables
and configurations.
 Conditionally required fields are explained in text which must be interpreted and converted to code.

 FIX standards tell the universe of possible values.
 Which values of OrdType and TimeInForce are accepted by my counterparty?

 Workflow is often not well documented.
 Under what conditions do I get a Session Level Reject, a Business Message Reject, or an

Execution Report with ExecType=Rejected?
 The same message type may have different contents for different scenarios, e.g. Execution Report

for order accepted versus an execution.
 In short, the information we have is sparse and not directly actionable.

7/14/2017 Copyright (c) FIX Protocol Ltd. 7

What is Orchestra?

7/14/2017 Copyright (c) FIX Protocol Ltd. 8

What is FIX Orchestra and what does it do?
 FIX Orchestra is a standard for exchanging machine-readable rules of engagement.
 FIX remains the protocol on the wire. No changes required to your existing FIX engine

(unless you want to). FIX Orchestra is metadata about a specific implementation of FIX.
 Orchestra is not a product, although FIX Trading Community may kickstart open-source

implementations as examples. Vendors and firms are free to develop proprietary
implementations, so long as they are conformant to the standard.

7/14/2017 Copyright (c) FIX Protocol Ltd. 9

What is FIX Orchestra and what does it do?
Orchestra content, all machine readable

 Message structure by each scenario. Implemented as an extension of FIX Repository.
 Accepted values of enumerations by message scenario
 Workflow: when I send this message type under this condition, what can I expect back?
 How external states affect messages, e.g. market phases, order state, price
 Express a condition such as for a conditionally required field using an expression language

7/14/2017 Copyright (c) FIX Protocol Ltd. 10

What is FIX Orchestra and what does it do?
 Content is a composed of multiple feature categories.

 Application layer structure and behavior – independent of encoding such as tag=value, FIXML, SBE
 Session layer behavior
 Operational: session configuration—identifiers and transport settings

 A firm does not need to implement every feature of FIX Orchestra to gain some benefit.
 Just want to share message definitions and conditional fields? That’s doable
 Want to extend to describe message responses, scenarios, and basic states? That’s doable
 Want to fully model in detail the FIX service? That’s doable

7/14/2017 Copyright (c) FIX Protocol Ltd. 11

What is FIX Orchestra and what does it do?
Orchestra process of engagement

 Counterparties exchange their Orchestra files, either statically or exposed through network
interfaces for discovery.

 Counterparties compare their own file with that of their partner.
 Discover differences and restrictions

 Automatically generate:
 FIX engine configuration
 Application configuration and code
 Test cases and sample messages
 Documentation for those pesky humans

7/14/2017 Copyright (c) FIX Protocol Ltd. 12

How to engage a FIX counterparty with Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 13

Orchestra is an interface definition
 Orchestra defines an interface to service offerings or service endpoints
 You don’t need to modify the internals of your applications
 Almost all existing FIX infrastructure has the provisioning information of FIX connections and

data dictionaries stored in multiple places and multiple formats.
 Orchestra can be used to define the service in one place within version control
 Then simple scripts can be created to read Orchestra files and update configuration files for

various services
 The benefits of Orchestra can be available with minimal investment

7/14/2017 Copyright (c) FIX Protocol Ltd. 14

FIX Orchestra supports innovation
Possible uses and tools

 Generate and run conformance tests
 Capture best practices as an Orchestra file instead of text
 Regulate internal flows within a large organization as well as between counterparties
 Orchestra is a contract for behavior – use it to generate an emulator for testing
 Capture an Orchestra file from FIX logs
 Analyze FIX logs for conformance to specified behavior
 Let’s go further…

 Generate Execution Management, Order Management, Smart Order Routing, Order Matching behavior
based upon exchange of state machine descriptions contained within FIX Orchestra files

7/14/2017 Copyright (c) FIX Protocol Ltd. 15

FIX Orchestra working group
Standard development tasks

 Gather requirements
 Ongoing

 Propose and discuss possible solutions with actual code or mockups
 Ongoing

 Write a specification for the standard
 Release Candidate 1 - available
 Release Candidate 2 – in process

 Develop examples and common utilities
 Promote the standard

7/14/2017 Copyright (c) FIX Protocol Ltd. 16

FIX Orchestra roll-out and adoption
FIX Trading Community tasks
 Standardization

 Working group uses GitHub to collaborate on schema and samples
 Working group proposes standard to Global Technical Committee
 Big bang or roll out in phases? e.g. message structure/FIX Repository 2016 edition, scenarios and

state machines, condition DSL, session layer
 Develop Orchestra files representing existing FIX standards

 Enhancement of FIX Repository
 Best practices by asset class, region, etc. – delegate to various working groups
 Publish in GitHub

 Develop open-source utilities
 File comparison and reporting tools
 Validation against schema

7/14/2017 Copyright (c) FIX Protocol Ltd. 17

FIX Orchestra roll-out and adoption
Firm and vendor tasks
 Develop open-source or proprietary utilities

 Compose Orchestra file from other sources
 Orchestra file editors
 Create or adapt configuration, test and code generators
 Web interface for session configuration – web services or semantic web technologies
 Certification tests

 Exchange files with counterparties
 Pilot program for early adopters

 Give feedback to working group

7/14/2017 Copyright (c) FIX Protocol Ltd. 18

FIX Repository → FIX Orchestra
 Orchestra and Repository 2016 Edition share a common XML schema
 The distinction is usage

 Repository declares message structures
 Orchestra adds workflow and conditional behavior.

 Users may select the set of features they wish to use.
 For this reason we are going to move to the term FIX Orchestra to refer to all

representations of financial messaging protocols

7/14/2017 Copyright (c) FIX Protocol Ltd. 19

Deep Dive into FIX Orchestra

7/14/2017 Copyright (c) FIX Protocol Ltd. 20

Deep dive in FIX Orchestra
Contents
 Common elements

 Abbreviations
 Datatypes with mapping to XML Schema types and General Purpose Datatypes (ISO 11404)
 Categories for documentation
 Sections for documentation
 Code Sets – sharable sets of valid values with underlying datatype
 Fields—sharable in many messages

 For each version of FIX
 Components, including common blocks and repeating groups
 Messages refer to components and fields

 Provenance
 Artifact described by Dublin Core Terms—who, what, when
 Each message element can convey history—when added, changed, deprecated

7/14/2017 Copyright (c) FIX Protocol Ltd. 21

Deep dive in FIX Orchestra
 New: a DSL to specify when conditionally required fields are required or forbidden (Boolean

expression, may reference other fields.)

<fixr:fieldRef id="44" name="Price" presence="conditional">

<fixr:required>

<fixr:when>OrdType in [Limit, StopLimit]</fixr:when>

</fixr:required>

<fixr:forbidden>

<fixr:when>OrdType = Market</fixr:when>

</fixr:forbidded>

</fixr:fieldRef>

Presence values are optional, required, conditional, forbidden, ignored, constant (need not be
transmitted on wire).

7/14/2017 Copyright (c) FIX Protocol Ltd. 22

Deep dive in Orchestra
 New: a code set is now a first-class object and may be shared among several fields.
 A code set has an underlying FIX datatype; may be char, int, string.

<fixr:codeSet name="TimeInForceCodeSet" type="char" default="Day">

<fixr:code value="0" name="Day“/>

<fixr:code value="1" name="GTC“/>

<fixr:code value="2" name="AtTheOpening“/>

<fixr:code value="3" name="IOC“/>

<fixr:code value="4" name="FillOrKill“/>

</fixr:codeSet>

The code set is the “type” of this field.
<fixr:field id="59" name="TimeInForce" type="TimeInForceCodeSet“/>

7/14/2017 Copyright (c) FIX Protocol Ltd. 23

Deep dive in FIX Repository 2016 Edition
 Datatypes section was enhanced to map FIX datatypes to General Purpose Datatypes (ISO

11404) as well as XML Schema types.
 Datatypes are about value space and should be independent of encoding.
 Both FIX and XML sometimes confused value and lexical spaces since they were originally

character-based encodings. But now FIX has binary encodings, so we have to get this right.
 Example: a FIX datatype is Price. Its value space is exact numbers. Therefore, it should not

be considered a subclass of float, as it was in the past.
 General Purpose Datatypes has this covered with Scaled number type with factor and radix=10

parts.
 XML Schema standard confuses value and lexical spaces of numbers. It is says that integer is

derived from decimal!?

7/14/2017 Copyright (c) FIX Protocol Ltd. 24

Deep dive in FIX Orchestra
Contents
 A superset of FIX Repository
 Actors with state variables and state machines
 Adds responses to a message, aside from structure

 Message response (workflow)
 State changes
 State machine transitions
 Each response qualified by “when” condition in DSL

7/14/2017 Copyright (c) FIX Protocol Ltd. 25

Deep dive in FIX Orchestra
Actor example (snippet)

<fixr:actor name="Market">

<!-- fields used as variables, not part of a message -->

<fixr:field id="336" name="TradingSessionID" type="String"/>

<fixr:field id="75" name="TradeDate" type="LocalMktDate"/>

<!– a state machine -->

<fixr:states name="Phase">

<fixr:initial name="Closed">

<fixr:transition name="Reopening" target="Preopen"/>

</fixr:initial>

<fixr:state name="Halted">

<fixr:transition name="Resumed" target="Preopen"/>

</fixr:state>

<fixr:state name="Open">

<fixr:transition name="Closing" target="Preclose"/>

</fixr:state>

7/14/2017 Copyright (c) FIX Protocol Ltd. 26

Deep dive in FIX Orchestra
Responses example – conditional DSL may reference message elements or actor states

<fixr:responses>

<fixr:response name="DKTrade">

<fixr:messageRef name="DKTrade" msgType="8“

context="DontKnowTrade"/>

<!-- validate value in incoming message -->

<fixr:when>^OrdType IN [Market, Limit, Stop]</fixr:when>

</fixr:response>

<fixr:response>

<fixr:messageRef name="BusinessMessageReject" msgType="j"/>

!-- test current state of a state machine -->

<fixr:when>$ApplicationState == DOWN</fixr:when>

</fixr:response>

</fixr:responses>

7/14/2017 Copyright (c) FIX Protocol Ltd. 27

Orchestra Interface Metamodel

7/14/2017 Copyright (c) FIX Protocol Ltd. 28

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 29

We start with the interface definition

<fixi:interfaces xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:fixi="http://fixprotocol.io/2016/fixinterfaces"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://fixprotocol.io/2016/fixinterfaces
../../main/resources/xsd/FixInterfaces.xsd">

<fixi:metadata>
<dcterms:subject>Service offerings and sessions example file</dcterms:subject>
<dcterms:description>Mock-up presentation for concepts</dcterms:description>
<dcterms:date>2017-04-21</dcterms:date>
</fixi:metadata>
<fixi:interface name="Private">

<!-- … details live in here -->

</fixi:interface>
</fixi:interfaces>

Interface Definition – define our service

7/14/2017 Copyright (c) FIX Protocol Ltd. 30

<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!-- one or more service offerings, with local orchestration file or internet address -->
<fixi:service name="orderEntry”
orchestration="https://mydomain.com/orchestra/orderEntry.xml"/>
<!-- the protcol stack -->
<fixi:userInterface name="ATDL" orchestration="https://mydomain.com/orchestra/algo.xml"/>
<fixi:encoding name="TagValue"/>
<fixi:sessionProtocol name="FIXT.1.1" reliability="recoverable"
orchestration="https://mydomain.com/orchestra/session.xml">

<fixi:annotation>
<fixi:documentation langId="en-us">FIX session protocol</fixi:documentation>

</fixi:annotation>
</fixi:sessionProtocol>
<fixi:transport name="TCP"/>
<fixi:sessions/>

</fixi:interface>

Here we can define our stack

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 31

<fixi:interfaces >
<fixi:metadata/>
<fixi:interface name="Private">

<!– Service and Protocol Definitions removed -->

<fixi:sessions>
<fixi:session name="XYZ-ABC">

<!-- inherits services and protocols from interface -->
<!-- alternate addresses are supported -->
<fixi:transport address="10.96.1.2:567" use="primary"/>
<fixi:transport address="10.96.2.2:567" use="secondary"/>
<!-- there can be any number of identifiers -->
<fixi:identifier name="SenderCompID">

<fixi:value>XYZ</fixi:value>
</fixi:identifier>
<fixi:identifier name="TargetCompID">

<fixi:value>ABC</fixi:value>
</fixi:identifier>
<!-- tells when session becomes effective so it can be configured in advance -->
<fixi:startTime>2017-05-17T09:30:00Z</fixi:startTime>

</fixi:session>
</fixi:sessions>

</fixi:interface>
</fixi:interfaces>

Now let us define a session

Interface Definition

7/14/2017 Copyright (c) FIX Protocol Ltd. 32

Now for something completely different a new service
<fixi:interface name="OrderRouting">

<fixi:service name="orderRouting"
orchestration="https://mydomain.com/orchestra/orderRouting.xml"/>
<fixi:encoding name="GPB" messageSchema="file://something.proto">
<fixi:annotation>
<fixi:documentation>Message schema attribute demonstrates
extensibility</fixi:documentation>
</fixi:annotation>
</fixi:encoding>
<fixi:protocol name="TLS" version="1.2" layer="transport">
<fixi:annotation>

<fixi:documentation>Additional protocols may be
added</fixi:documentation>

</fixi:annotation>
</fixi:protocol>
<fixi:sessions>

</fixi:interface>

URI to local file or web resource

7/14/2017 Copyright (c) FIX Protocol Ltd. 33

ISO 20022
Metamodel

SWIFT MX
Metamodel

FIX
Orchestra

Metamodel

Semantic
Requirements

ISO 20022
WG5

Metamodel

ISO 20022
Next

Metamodel

Improvements

New
Requirements

Data point modeling (DPM)? FpML?

Similar concepts
 Need to specify how a message is actually used

 Business rules
 Restrictions
 Extensions

7/14/2017 Copyright (c) FIX Protocol Ltd. 34

ISO 20022
WG5 Model

FIX Orchestra
Scenarios

MX Usage
Guidelines

ISO 20022
Variants

	�� FIX Orchestra: The Full Stop at the End of FIX
	FIX Orchestra Status
	FIX Orchestra History – June 2015
	FIX Orchestra History
	Why Orchestra?
	�How to engage a FIX counterparty without Orchestra
	What problems are we trying to solve?
	What is Orchestra?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	What is FIX Orchestra and what does it do?
	�How to engage a FIX counterparty with Orchestra
	Orchestra is an interface definition
	FIX Orchestra supports innovation
	FIX Orchestra working group
	FIX Orchestra roll-out and adoption
	FIX Orchestra roll-out and adoption
	FIX Repository → FIX Orchestra
	Deep Dive into FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in Orchestra
	Deep dive in FIX Repository 2016 Edition
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Deep dive in FIX Orchestra
	Orchestra Interface Metamodel
	Interface Definition
	Interface Definition – define our service
	Interface Definition
	Interface Definition
	Слайд номер 33
	Similar concepts

