GAP TESTING:
COMBINING
DIVERSE TESTING

STRATEGIES FOR
FUN AND PROFIT

DR. BEN LIVSHITS
IMPERIAL COLLEGE LONDON

MY BACKGROUND

= Professor at Imperial College London = Work on a range of topics including
= Industrial researcher = Software reliability
= Stanford Ph.D. = Program analysis
= Here to talk about some of the technologies = Security and privacy
underlying testing = Crowd-sourcing

= Learn about industrial practice = etc.

FOR FUNCTIONAL TESTING: MANY STRATEGIES

Human effort Automation

= Test suites written by developers and/or

testers = (Black box) Fuzzing

= Field testing " White box fuzzing or symbolic execution

" Crowd-based testin : :
8 " We might even throw in other automated

= Penetration testing strategies into this category such as static
analysis

MANUALVS. AUTOMATED

Present

The reliance on
o o manual testing i< (he

- top technical challenge
n app development

e T Test automation
Automated Testing | reqguires dEU'EIﬂFEﬁ.

https://www.slideshare.net/losifltkin/extent20 | 6-the-future-of-software-testing

My focus is on automation, generally

However, ultimately, these two approaches should be
complimentary to each other

Case in point: consider the numerous companies that do
mobile app testing, i.e. Applause

= The general approach is to upload an app binary, have a
crowd of people on call, they jump on the app, encounter
bugs, report bugs, etc.

= Generally, not many guarantees from this kind of approach

= But it’s quite useful as the first level of testing

MANUALVS.AUTOMATED: HOW DO THEY COMPARE!?

= Fundamentally, a difficult question to answer
" What is our goal

= Operational goals

= Make sure the application doesn’t crash at the start

= Make sure the application isn’t easy to hack into DO we have to Choose?
= Development/design goals

= Make sure the coverage is high or 100%, for some
definition of what coverage is

= Make sure the application doesn’t crash, ever, or violate
assertions, ever?

MULTIPLE, COMPETING, UNCOORDINATED

TECHNIQUES ARE NORMAL

= We would love to have a situation of when one
solution delivers all the value

= Case in point: symbolic execution was advertised as = The practice of symbolic execution is unfortunately
a the best thing since sliced bread: different
= Precision of runtime execution = Coverage numbers from KLEE and SAGE

= Coverage of static analysis

" How can this go wrong!?

SO, MAYBE ONE TECHNIQUE ALONE IS NOT GOOD ENOUGH

= What can we do?

" Well, let’s assume we have the compute cycles
(which we often do) and the money to hire testers
(which we often don’t)

" How do combine these efforts?
" Fundamental challenges

= Overlap is significant, bling fuzzing is not so helpful

= Differences are hard to hit — for example, how do we
hit a specific code execution path to get closer to 100%
path coverage! Symbolic execution is a heavy-weight,
less-than-scalable answer

DEVELOPER-WRITTEN TESTS VS. IN-THE-FIELD EXECUTION

= Study four large open-source Java projects

= We find that developer-written test suites fail to accurately
represent field executions: the tests, on average, miss 6.2% of the
statements and 7.7% of the methods exercised in the field;

= The behavior exercised only in the field kills an extra 8.6% of the
mutants; finally, the tests miss 52.6% of the behavioral invariants that
occur in the field.

10th [EEE International Conference on Software Testing, Verification, and Validation

Behavioral Execution Comparison:
Are Tests Representative of Field Behavior?

Qiangian Wanga' Yuriy Brun™ Alessandro Orso™
FSehool of Computer Science " College of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA, USA 30332-0765
{agameian wang, orse} @ec.gatech.edu

Abstraci—Software testing Is the mast widely wsed approach
DI‘ assessing and improvieg software quality, but i is inbherently
ative of bow the software

what evient tests represent how real users use soffware, amd
how 1o measure behavioral differences between test and fiekd
executions, We sty four reakworkd systems. ane used by end-
users and three used by other iclient) software, amd o

test subtes written by ihe systems’ developers to ekl evecutions
using Four models of bebavior: statement coverage, melhod
caveruge, mutation score, and o temporal-invariant-bused model
we developed. We find that developer-written test sultes fall to
avcurately represent field executions: the fests, on average, miss
6.2% of the satements and 7.7% of the methods exercised in the
field: the behavior exervised only in the field kills an extra 8.6%
af the mutants; finally, the tests miss $26% of the hehavioral
imvarians that occar in the field, In sddition, augmenting ibe
inchosse fest suites with sutvmatically-generated tests by a tool
targesing high code covernge aly marginally improves the ests
hehuavioral rcmﬂnlnllwnm These differeises I«wcn ficlil
anl test pmlulul the 1
more sophisticated ones that we meusured using our imvariant.
based model —can provide Insight for develnpers and suggest &
Detter methiosd For IeEsrng test siite quality.

Imadex Terms—software westing; field data; model inference

I INTRODUCTION

Despite its inherent limitations, testing is the most widely
used method for assessing and improving software quality. One
comman concem with testing s that the test cases used o
exercise the software in house are ofien pot represeniative, or
oaly pantially representative, of real-world software use. This
limits the effectiveness of the esing process. Although this
limitation i well known, there is not a broad understanding of
{17 the extent 1o which test cuses may Fall short in representing
real-world executions, (2) the ways in which tests and real-
world executions differ, and {3) what can be done 10 bridge
this gap in an effective and efficient way, As o step toward
addressing these open questions, in this paper we measure
the degree w which in-house tesie use software in ways
representative of how real users use the software in the feld,

To that end, we swdied four software syswems: JeiUML
Apache Commons 10, Apache Commens Lang. and Apache
Logdj. JetUML has two inchouse test suites that achieve a
relatively high coverage, and Commans 10, Commons Lang.
and Logdj cach have o test suite that achicves over 75%

TR S0A03 130T §31.00 0 200 T IEEE
DOL 10 ICET 201736,

University of Massichusetts
Amherst, MA, USA D1003-9264
brumi@ es ummiss edu

statement coverage, Beciuse software can be wsed by end-
users ar by ather (client) software, we examined both coses,
We collected end-user executions for JetUML and executions
through client code for Commons 10, Commons Lang, and
Logdj. Specifically, we deployed JetUML to 83 human subjects
who wsed it 1o perform several modeling taks. and we collected
wraces of Conmens 10, Commns Lang, and Logd) being used
by real-world prijects selectied fram GitHub (see Section IV-A),

T compare the behvior of in-house tests and field execu-
tions, we used four behavioral models: owo coverape-hased
midels (statements and methods covered), a mutation-based
madel {killed mutants, applied only w the library benchmarks
because of a limitation in the exccution reconding wol we
usid). and a P b 1 model (KTails-b 1
invariants [6], [10]). The coverage-based models represent
the state of the practice in indusry wday for evaluating tes
suite quality (1], [22], 127, (281, [30]. The mutation model
he state of the ant for tess suite quality evaluation, bat it
5 used sparingly in industry [33]. Finally, we designed the
invariant model w furher differeatiare ficld executions from
st execulions at a finer-grained level. We hypotbesize that the
Tiner-grained medel is betler suited for sdentifying bebsavioral
differences amd is thus more useful in assessing lest suite
quality than coverige and mutation,

The results of our behaviorl comparisen shaw that, for all
four models considered, field executions are different from
developer-writien tests in serms of the behavior they exercise,
For the four systems. analyzed, on average, 6.2% of staiements
and 7.7% of the methods executed in the fiekd were not executed
By the tests. Muoreover, mutation analysis showed tat adding
ehavior exhibited by the ekl executions kills §.6% mare
mutants than the behavior exhibited by the developer-written
tests, Finally, we found that the invariant model identified even
more sizable differences between developer-written tests and
field executions: 32.6% of the invariants devected in the field
were missed by the tesis, on average.

We also investigated whether aulomated s generstion coubd
Telp improve the representaiveness of in-house wess. To do so,
we augmented the developer-writien tests using EvoSuite [23]
an automatic test generation toal, and analyzed whether these
additional tests helped decrease the gap herween behavior
exercised by tests and in the field, Our results show that

am e

saciety

LET’S FOCUS ON EXECUTION PATHS

Rarely seen:

How do we hit this Common PathS: s Need Ji o off
without wasting Covered multiple times eed to coordinate our testing eforts

effort? Extra work is not warranted = Gap testing principles
However, extra testers are :
! : ! = Avoid repeated, wasteful work

likely to hit exactly this

= Find ways to hit methods/statements/basic

blocks/paths that are not covered by other
methods

Occasionally

encountered:

How do we effectively
cover this?

TWO EXAMPLES OF MORE TARGETED TESTING

Crowd-based Ul testing Targeted symbolic execution
aiming for 100% coverage aiming to hit interesting parts of the code

GAPTESTING FOR Ul

= Testing Android apps = Move away from covered screens

= Goal: to have 100% Ul coverage = By shutting off parts of the app

= How to define that is sometimes a little murky = Aim is to to get as close as 100% coverage by guiding

= But let’s assume we have a notion of screen coverage crowd-sourced testers

CROWD OF TESTERSWITH THE SYSTEM

GUIDING THEM TOWARD UNEXPLORED PATHS

65:03 PM = 6:03 PM 6:03 PM

Breakfast myfitnesspal

purdueally

Recent Froquent MyFoods = Meals Recipes

Add to Diary

Recel

Nature Valley: Grunchy Granola Bars Peanut...
Granola Bars, 2 bars, 190 calories

@ Diary

News Feed

e,
” jenvillarreal

1_,2‘
[~ Progress

2% Friends ‘

jenvillarreal burned 743 calories deing 85 jenvil
minutes of cardio exercises, including “Running Messages minut
6.9 mph" 6.9m

1/3 Less Fat Cream Cheese 8 0z (226 G) (M...

Kraft Philadelphia, 2 Tbsp (31 g), 70 calories Wl Apps & Devices

. Comment Comn
1 Everything Bagel
Thomas', 95 g, 280 calories 'Q‘ Reminders ™
Pumpkin Pie Blizzard ‘
Dairy Queen, 1 Small, 580 calories Setti
ettin
g8 jenvil
Pure Leaf Unsweetened Tea 18.5 oz Bottle
fimy — @ Help Comr

GUIDING SYMBOLIC EXECUTION

= Continue exploring the program until we find
something “interesting’ m

® That may be a crash or an alarm from a tool such as
AddressSanitizer, ThreadSanitizer, Valgrind, etc.

= Suffers from exponential blow-up issues and solver u
overhead

If we instead know what we are looking for, for
example, a method in the code we want to see
called, we can direct our analysis better

Prioritize branch outcomes so as to him the target

ULTIMATEVISION

= A portfolio of testing strategies that can be invoked
on demand

= Deployed together to improve the ultimate outcome

= Sometimes, manual testing in the right thing,
sometimes it’'s not

= We've seen some examples of complimentary
testing strategies

= The list is nowhere close to exhaustive...

OPTIMIZING TESTING EFFORTS

= How to get the most out of your
portfolio of testing approaches,
minimizing the time and money spent

" |t would be nice to be able to estimate
the efficacy of a particular method and
the cost in terms of time, human
involvement, and machine cycles

= That’s actually possible with machine
learning-based predictive models, i.e.
mean time to the next bug found is
something we can train predictors for

THE END.

GAP TESTING: COMBINING DIVERSE TESTING STRATEGIES FOR

FUN AND PROFIT

We have seen a number of testing techniques such as fuzzing, symbolic execution, and crowd-sourced testing emerge
as viable alternatives to the more traditional strategies of developer-driven testing in the last decade.

While there is a lot of excitement around many of these ideas, how to property combine diverse testing techniques
in order to achieve a specific goal, i.e. maximize statement-level coverage remains unclear.

The goal of this talks is to illustrate how to combine different testing techniques by having them naturally
complement each other, i.e. if there is a set of methods that are not covered via automated testing, how do we use a
crowd of users and direct their efforts toward those methods, while minimizing effort duplication?

Can multiple testing strategies peacefully co-exist! When combined, can they add up to a comprehensive strategy
that gives us something that was impossible before, i.e. |00% test coverage!

	Gap testing: combining diverse testing strategies for fun and profit
	My background
	For functional testing: many strategies
	Manual vs. automated
	Manual vs. Automated: How do they compare?
	Multiple, competing, uncoordinated�techniques are normal
	So, maybe one technique alone is not good enough
	developer-written tests vs. in-the-field execution
	Let’s focus on Execution Paths
	Two examples of more targeted testing
	Gap testing for UI
	Crowd of testers with the system �guiding them toward unexplored paths
	Guiding symbolic execution
	Ultimate vision	
	Optimizing testing efforts
	The end.
	Gap testing: combining diverse testing strategies for fun and profit

