
DR. BEN LIVSHITS

IMPERIAL COLLEGE LONDON

GAP TESTING:

COMBINING

DIVERSE TESTING

STRATEGIES FOR

FUN AND PROFIT

MY BACKGROUND

 Professor at Imperial College London

 Industrial researcher

 Stanford Ph.D.

 Here to talk about some of the technologies
underlying testing

 Learn about industrial practice

 Work on a range of topics including

 Software reliability

 Program analysis

 Security and privacy

 Crowd-sourcing

 etc.

FOR FUNCTIONAL TESTING: MANY STRATEGIES

Human effort

 Test suites written by developers and/or
testers

 Field testing

 Crowd-based testing

 Penetration testing

Automation

 (Black box) Fuzzing

 White box fuzzing or symbolic execution

 We might even throw in other automated
strategies into this category such as static
analysis

MANUAL VS. AUTOMATED

 My focus is on automation, generally

 However, ultimately, these two approaches should be
complimentary to each other

 Case in point: consider the numerous companies that do
mobile app testing, i.e. Applause

 The general approach is to upload an app binary, have a
crowd of people on call, they jump on the app, encounter
bugs, report bugs, etc.

 Generally, not many guarantees from this kind of approach

 But it’s quite useful as the first level of testing

https://www.slideshare.net/IosifItkin/extent2016-the-future-of-software-testing

MANUAL VS. AUTOMATED: HOW DO THEY COMPARE?

 Fundamentally, a difficult question to answer

 What is our goal

 Operational goals

 Make sure the application doesn’t crash at the start

 Make sure the application isn’t easy to hack into

 Development/design goals

 Make sure the coverage is high or 100%, for some
definition of what coverage is

 Make sure the application doesn’t crash, ever, or violate
assertions, ever?

Do we have to choose?

MULTIPLE, COMPETING, UNCOORDINATED
TECHNIQUES ARE NORMAL

 We would love to have a situation of when one
solution delivers all the value

 Case in point: symbolic execution was advertised as
a the best thing since sliced bread:

 Precision of runtime execution

 Coverage of static analysis

 How can this go wrong?

 The practice of symbolic execution is unfortunately
different

 Coverage numbers from KLEE and SAGE

SO, MAYBE ONE TECHNIQUE ALONE IS NOT GOOD ENOUGH

 What can we do?

 Well, let’s assume we have the compute cycles
(which we often do) and the money to hire testers
(which we often don’t)

 How do combine these efforts?

 Fundamental challenges

 Overlap is significant, bling fuzzing is not so helpful

 Differences are hard to hit – for example, how do we
hit a specific code execution path to get closer to 100%
path coverage? Symbolic execution is a heavy-weight,
less-than-scalable answer

DEVELOPER-WRITTEN TESTS VS. IN-THE-FIELD EXECUTION

 Study four large open-source Java projects

 We find that developer-written test suites fail to accurately
represent field executions: the tests, on average, miss 6.2% of the
statements and 7.7% of the methods exercised in the field;

 The behavior exercised only in the field kills an extra 8.6% of the
mutants; finally, the tests miss 52.6% of the behavioral invariants that
occur in the field.

LET’S FOCUS ON EXECUTION PATHS

 Need to coordinate our testing efforts

 Gap testing principles

 Avoid repeated, wasteful work

 Find ways to hit methods/statements/basic
blocks/paths that are not covered by other
methods

Common paths:
Covered multiple times

Extra work is not warranted
However, extra testers are

likely to hit exactly this

Occasionally
encountered:

How do we effectively
cover this?

Rarely seen:
How do we hit this

without wasting
effort?

TWO EXAMPLES OF MORE TARGETED TESTING

Crowd-based UI testing
aiming for 100% coverage

Targeted symbolic execution
aiming to hit interesting parts of the code

GAP TESTING FOR UI

 Testing Android apps

 Goal: to have 100% UI coverage

 How to define that is sometimes a little murky

 But let’s assume we have a notion of screen coverage

 Move away from covered screens

 By shutting off parts of the app

 Aim is to to get as close as 100% coverage by guiding
crowd-sourced testers

CROWD OF TESTERS WITH THE SYSTEM
GUIDING THEM TOWARD UNEXPLORED PATHS

GUIDING SYMBOLIC EXECUTION

 Continue exploring the program until we find
something “interesting’

 That may be a crash or an alarm from a tool such as
AddressSanitizer, ThreadSanitizer, Valgrind, etc.

 Suffers from exponential blow-up issues and solver
overhead

 If we instead know what we are looking for, for
example, a method in the code we want to see
called, we can direct our analysis better

 Prioritize branch outcomes so as to him the target

ULTIMATE VISION

 A portfolio of testing strategies that can be invoked
on demand

 Deployed together to improve the ultimate outcome

 Sometimes, manual testing in the right thing,
sometimes it’s not

 We’ve seen some examples of complimentary
testing strategies

 The list is nowhere close to exhaustive…

OPTIMIZING TESTING EFFORTS

 How to get the most out of your
portfolio of testing approaches,
minimizing the time and money spent

 It would be nice to be able to estimate
the efficacy of a particular method and
the cost in terms of time, human
involvement, and machine cycles

 That’s actually possible with machine
learning-based predictive models, i.e.
mean time to the next bug found is
something we can train predictors for

THE END.

GAP TESTING: COMBINING DIVERSE TESTING STRATEGIES FOR
FUN AND PROFIT

We have seen a number of testing techniques such as fuzzing, symbolic execution, and crowd-sourced testing emerge
as viable alternatives to the more traditional strategies of developer-driven testing in the last decade.

While there is a lot of excitement around many of these ideas, how to property combine diverse testing techniques
in order to achieve a specific goal, i.e. maximize statement-level coverage remains unclear.

The goal of this talks is to illustrate how to combine different testing techniques by having them naturally
complement each other, i.e. if there is a set of methods that are not covered via automated testing, how do we use a
crowd of users and direct their efforts toward those methods, while minimizing effort duplication?

Can multiple testing strategies peacefully co-exist? When combined, can they add up to a comprehensive strategy
that gives us something that was impossible before, i.e. 100% test coverage?

	Gap testing: combining diverse testing strategies for fun and profit
	My background
	For functional testing: many strategies
	Manual vs. automated
	Manual vs. Automated: How do they compare?
	Multiple, competing, uncoordinated�techniques are normal
	So, maybe one technique alone is not good enough
	developer-written tests vs. in-the-field execution
	Let’s focus on Execution Paths
	Two examples of more targeted testing
	Gap testing for UI
	Crowd of testers with the system �guiding them toward unexplored paths
	Guiding symbolic execution
	Ultimate vision	
	Optimizing testing efforts
	The end.
	Gap testing: combining diverse testing strategies for fun and profit

