
DR. BEN LIVSHITS

IMPERIAL COLLEGE LONDON

GAP TESTING: 

COMBINING 

DIVERSE TESTING 

STRATEGIES FOR 

FUN AND PROFIT



MY BACKGROUND

 Professor at Imperial College London

 Industrial researcher

 Stanford Ph.D.

 Here to talk about some of the technologies 
underlying testing

 Learn about industrial practice

 Work on a range of topics including

 Software reliability

 Program analysis

 Security and privacy

 Crowd-sourcing

 etc.



FOR FUNCTIONAL TESTING: MANY STRATEGIES

Human effort

 Test suites written by developers and/or 
testers

 Field testing

 Crowd-based testing

 Penetration testing

Automation

 (Black box) Fuzzing

 White box fuzzing or symbolic execution

 We might even throw in other automated 
strategies into this category such as static 
analysis



MANUAL VS.  AUTOMATED

 My focus is on automation, generally

 However, ultimately, these two approaches should be 
complimentary to each other 

 Case in point: consider the numerous companies that do 
mobile app testing, i.e.  Applause

 The general approach is to upload an app binary, have a 
crowd of people on call, they jump on the app, encounter 
bugs, report bugs, etc. 

 Generally, not many guarantees from this kind of approach

 But it’s quite useful as the first level of testing

https://www.slideshare.net/IosifItkin/extent2016-the-future-of-software-testing



MANUAL VS. AUTOMATED: HOW DO THEY COMPARE?

 Fundamentally, a difficult question to answer

 What is our goal

 Operational goals

 Make sure the application doesn’t crash at the start

 Make sure the application isn’t easy to hack into

 Development/design goals

 Make sure the coverage is high or 100%, for some 
definition of what coverage is

 Make sure the application doesn’t crash, ever, or violate 
assertions, ever?

Do we have to choose?



MULTIPLE, COMPETING, UNCOORDINATED
TECHNIQUES ARE NORMAL

 We would love to have a situation of when one
solution delivers all the value

 Case in point: symbolic execution was advertised as 
a the best thing since sliced bread:

 Precision of runtime execution

 Coverage of static analysis

 How can this go wrong?

 The practice of symbolic execution is unfortunately 
different

 Coverage numbers from KLEE and SAGE



SO,  MAYBE ONE TECHNIQUE ALONE IS NOT GOOD ENOUGH

 What can we do?

 Well, let’s assume we have the compute cycles 
(which we often do) and the money to hire testers 
(which we often don’t) 

 How do combine these efforts?

 Fundamental challenges

 Overlap is significant, bling fuzzing is not so helpful

 Differences are hard to hit – for example, how do we 
hit a specific code execution path to get closer to 100% 
path coverage? Symbolic execution is a heavy-weight, 
less-than-scalable answer



DEVELOPER-WRITTEN TESTS VS. IN-THE-FIELD EXECUTION

 Study four large open-source Java projects 

 We find that developer-written test suites fail to accurately 
represent field executions: the tests, on average, miss 6.2% of the 
statements and 7.7% of the methods exercised in the field;

 The behavior exercised only in the field kills an extra 8.6% of the 
mutants; finally, the tests miss 52.6% of the behavioral invariants that 
occur in the field. 



LET’S FOCUS ON EXECUTION PATHS

 Need to coordinate our testing efforts

 Gap testing principles

 Avoid repeated, wasteful work

 Find ways to hit methods/statements/basic 
blocks/paths that are not covered by other 
methods

Common paths:
Covered multiple times

Extra work is not warranted
However, extra testers are 

likely to hit exactly this

Occasionally 
encountered:

How do we effectively 
cover this? 

Rarely seen:
How do we hit this 

without wasting 
effort? 



TWO EXAMPLES OF MORE TARGETED TESTING

Crowd-based UI testing 
aiming for 100% coverage

Targeted symbolic execution 
aiming to hit interesting parts of the code



GAP TESTING FOR UI

 Testing Android apps

 Goal: to have 100% UI coverage

 How to define that is sometimes a little murky

 But let’s assume we have a notion of screen coverage

 Move away from covered screens

 By shutting off parts of the app

 Aim is to to get as close as 100% coverage by guiding 
crowd-sourced testers



CROWD OF TESTERS WITH THE SYSTEM 
GUIDING THEM TOWARD UNEXPLORED PATHS



GUIDING SYMBOLIC EXECUTION

 Continue exploring the program until we find 
something “interesting’

 That may be a crash or an alarm from a tool such as 
AddressSanitizer, ThreadSanitizer, Valgrind, etc. 

 Suffers from exponential blow-up issues and solver 
overhead

 If we instead know what we are looking for, for 
example, a method in the code we want to see 
called, we can direct our analysis better

 Prioritize branch outcomes so as to him the target



ULTIMATE VISION

 A portfolio of testing strategies that can be invoked 
on demand

 Deployed together to improve the ultimate outcome

 Sometimes, manual testing in the right thing, 
sometimes it’s not 

 We’ve seen some examples of complimentary 
testing strategies

 The list is nowhere close to exhaustive…



OPTIMIZING TESTING EFFORTS

 How to get the most out of your 
portfolio of testing approaches, 
minimizing the time and money spent

 It would be nice to be able to estimate 
the efficacy of a particular method and 
the cost in terms of time, human 
involvement, and machine cycles

 That’s actually possible with machine 
learning-based predictive models, i.e. 
mean time to the next bug found is 
something we can train predictors for



THE END.



GAP TESTING: COMBINING DIVERSE TESTING STRATEGIES FOR 
FUN AND PROFIT

We have seen a number of testing techniques such as fuzzing, symbolic execution, and crowd-sourced testing emerge 
as viable alternatives to the more traditional strategies of developer-driven testing in the last decade. 

While there is a lot of excitement around many of these ideas, how to property combine diverse testing techniques 
in order to achieve a specific goal, i.e. maximize statement-level coverage remains unclear.

The goal of this talks is to illustrate how to combine different testing techniques by having them naturally 
complement each other, i.e. if there is a set of methods that are not covered via automated testing, how do we use a 
crowd of users and direct their efforts toward those methods, while minimizing effort duplication? 

Can multiple testing strategies peacefully co-exist? When combined, can they add up to a comprehensive strategy 
that gives us something that was impossible before, i.e. 100% test coverage?


	Gap testing: combining diverse testing strategies for fun and profit
	My background
	For functional testing: many strategies
	Manual vs.  automated
	Manual vs. Automated: How do they compare?
	Multiple, competing, uncoordinated�techniques are normal
	So,  maybe one technique alone is not good enough
	developer-written tests vs. in-the-field execution
	Let’s focus on Execution Paths
	Two examples of more targeted testing
	Gap testing for UI
	Crowd of testers with the system �guiding them toward unexplored paths
	Guiding symbolic execution
	Ultimate vision	 
	Optimizing testing efforts
	The end.
	Gap testing: combining diverse testing strategies for fun and profit

